skip to main content


Search for: All records

Creators/Authors contains: "Pedersen, Joel A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. MXenes are a newer class of 2D materials, possess with desirable properties such as large specific surface area, conductivity, and hydrophilicity, making them attractive for various environmental applications, including remediation and as membranes for water treatment. Until recently, the practical implementation of MXenes was hindered by their instability in water, although improved synthesis procedures have largely addressed this issue. Consequently, it is now important to assess the stability of MXenes in engineered environments relevant to drinking water and membrane operation (e.g. backwashing). In this study, Ti3C2Tx MXenes were found to remain stable upon exposure to an aqueous environment saturated with oxygen and to UVC and UVA light at circumneutral pH, but were transformed upon exposure to Fe(III) chloride and free chlorine. The chlorination reaction kinetics are 1st order with respect to Ti3C2Tx and free chlorine concentration, with a rate constant that increased at pH ≤ 7.5, implicating HOCl as the reactive species. We propose that MXene reactions with HOCl occur by an electrophilic attack of Cl+, forming TiO2 and degrading the MXene. AFM data shows that transformations are initiated at the edges of the MXene sheets and localized areas on the MXene, suggesting that the initial sites for Cl+ attack are defect sites and/or uncoordinated Ti atoms. During the initial stages of the oxidative degradation, the sheet-like structure of colloidal MXenes is preserved, although prolonged chlorine exposure leads to three-dimensional crystalline (anatase) TiO2 formation. The degradation of MXenes during chlorinationThis contrasts with the inertness of nanoscale TiC, highlighting the need to devise surface modification processes that will allow MXenes to resist the oxidative conditions associated with membrane regeneration/backwashing. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. A lack of mechanistic understanding of nanomaterial interactions with plants and algae cell walls limits the advancement of nanotechnology-based tools for sustainable agriculture. We systematically investigated the influence of nanoparticle charge on the interactions with model cell wall surfaces built with cellulose or pectin and performed a comparative analysis with native cell walls of Arabidopsis plants and green algae (Choleochaete). The high affinity of positively charged carbon dots (CDs) (46.0 ± 3.3 mV, 4.3 ± 1.5 nm) to both model and native cell walls was dominated by the strong ionic bonding between the surface amine groups of CDs and the carboxyl groups of pectin. In contrast, these CDs formed weaker hydrogen bonding with the hydroxyl groups of cellulose model surfaces. The CDs of similar size with negative (−46.2 ± 1.1 mV, 6.6 ± 3.8 nm) or neutral (−8.6 ± 1.3 mV, 4.3 ± 1.9 nm) ζ-potentials exhibited negligible interactions with cell walls. Real-time monitoring of CD interactions with model pectin cell walls indicated higher absorption efficiency (3.4 ± 1.3 10−9) and acoustic mass density (313.3 ± 63.3 ng cm–2) for the positively charged CDs than negative and neutral counterparts (p < 0.001 and p < 0.01, respectively). The surface charge density of the positively charged CDs significantly enhanced these electrostatic interactions with cell walls, pointing to approaches to control nanoparticle binding to plant biosurfaces. Ca2+-induced cross-linking of pectin affected the initial absorption efficiency of the positively charged CD on cell wall surfaces (∼3.75 times lower) but not the accumulation of the nanoparticles on cell wall surfaces. This study developed model biosurfaces for elucidating fundamental interactions of nanomaterials with cell walls, a main barrier for nanomaterial translocation in plants and algae in the environment, and for the advancement of nanoenabled agriculture with a reduced environmental impact. 
    more » « less
    Free, publicly-accessible full text available December 5, 2024
  3. We use diamond nanoparticles (DNPs) wrapped in the cationic polyelectrolyte poly(allylamine) hydrochloride (PAH) and bilayers composed of either pure DOPC or a mixture of DOPC/DOPG to investigate the influence of membrane phospholipid composition and net surface charge on nanoparticle-membrane interactions and the extent of nanoparticle adhesion to supported phospholipid bilayers. Our results show that in all cases electrostatic attractions between the negatively charged bilayer and cationic PAH-DNP were responsible for the initial attachment of particles, and the lateral electrostatic repulsion between adsorbed particles on the bilayer surface determined the final extent of PAH-DNP attachment. Upon attachment, NPs attract lipids by the contact ion pairing between the ammonium groups on PAH and phosphate and glycerol groups on the lipids and acquire a lipid corona. Lipid corona formation on the PAH-DNP reduces the effective charge density of the particle and is in fact a key factor determining the final extent of NP attachment to the bilayer. Incorporation of DOPG to the bilayer leads to a decrease in efficiency and final extent of attachment compared to DOPC alone. The reduction in PAH-DNP attachment in the presence of DOPG is attributed to the adsorption of free PAH in equilibrium with bound PAH in the nanoparticle solution, thus reducing electrostatic attraction between PAH-DNPs and SLBs. This leads to an increase in hydrogen bonding interactions between lipid headgroups that limits extraction of phospholipids from the bilayer by PAH-DNP, lessening the reduction in interparticle repulsion achieved by acquisition of a lipid corona. Our results indicate that the inclusion of charged phospholipids in SLBs changes bilayer rigidity and stability and hinders the attachment of PAH-DNPs by preventing lipid extraction from the bilayer. 
    more » « less
    Free, publicly-accessible full text available September 27, 2024
  4. Supported lipid bilayers are often used as model systems for studying interactions of biological membranes with protein or nanoparticles. A supported lipid bilayer is a phospholipid bilayer built on a solid substrate. The latter is typically made of silica or a metal oxide due to the ease of its formation and range of compatible measurement techniques. Recently, a solvent-assisted method involving supported lipid bilayer formation has allowed the extension of compatible substrate materials to include noble metals such as gold. Here, we examine the influence of substrate composition (SiO2 vs Au) on the interactions between anionic ligand-coated Au nanoparticles or cytochrome c and zwitterionic supported lipid bilayers using quartz crystal microbalance with dissipation monitoring. We find that anionic nanoparticles and cytochrome c have higher adsorption to bilayers formed on Au relative to those on SiO2 substrates. We examine the substrate-dependence of nanoparticle adsorption with DLVO theory and all-atom simulations, and find that the stronger attractive van der Waals and weaker repulsive electrostatic forces between anionic nanoparticles and Au substrates vs anionic nanoparticles and SiO2 substrates could be responsible for the change in adsorption observed. Our results also indicate that the underlying substrate material influences the degree to which nanoscale analytes interact with supported lipid bilayers; therefore, interpretation of the supported lipid bilayer model system should be conducted with understanding of support properties. 
    more » « less
  5. Gold nanoparticles are versatile materials for biological applications because their properties can be modulated by assembling ligands on their surface to form monolayers. However, the physicochemical properties and behaviors of monolayer-protected nanoparticles in biological environments are difficult to anticipate because they emerge from the interplay of ligand–ligand and ligand–solvent interactions that cannot be readily inferred from ligand chemical structure alone. In this work, we demonstrate that quantitative nanostructure–activity relationship (QNAR) models can employ descriptors calculated from molecular dynamics simulations to predict nanoparticle properties and cellular uptake. We performed atomistic molecular dynamics simulations of 154 monolayer-protected gold nanoparticles and calculated a small library of simulation-derived descriptors that capture nanoparticle structural and chemical properties in aqueous solution. We then parametrized QNAR models using interpretable regression algorithms to predict experimental measurements of nanoparticle octanol–water partition coefficients, zeta potentials, and cellular uptake obtained from a curated database. These models reveal that simulation-derived descriptors can accurately predict experimental trends and provide physical insight into what descriptors are most important for obtaining desired nanoparticle properties or behaviors in biological environments. Finally, we demonstrate model generalizability by predicting cell uptake trends for 12 nanoparticles not included in the original data set. These results demonstrate that QNAR models parametrized with simulation-derived descriptors are accurate, generalizable computational tools that could be used to guide the design of monolayer-protected gold nanoparticles for biological applications without laborious trial-and-error experimentation. 
    more » « less
  6. Mechanisms of nanomaterial delivery to plant chloroplasts have been explored to improve plant stress tolerance, promote photosynthesis, facilitate genetic engineering, and manufacture self-repairing biomaterials, fuels, and biopharmaceuticals. However, the molecular interactions of nanomaterials with chloroplast membranes are not well understood. In this study, we examine the interactions of an important set of chloroplast membrane lipids including sulfoquinovosyl diacylglycerols with carbon nanodots varying in functional group charge. To accomplish this objective, we constructed a novel model chloroplast membrane and interrogated the influence of carbon nanodot functional group charge, model chloroplast membrane composition, and ionic strength on the carbon nanodot-chloroplast membrane interactions using quartz crystal microbalance with dissipation monitoring. We further examined the interaction of carbon nanodots with native chloroplasts isolated from Arabidopsis thaliana using confocal laser-scanning microscopy. Our results indicate that carbon nanodot–chloroplast membrane interactions are dictated primarily by electrostatics. Despite being the least abundant lipids in chloroplast membranes, we find that the relative abundance of sulfoquinovosyl diacylglycerol in model membranes is a critical factor governing both the affinity and capacity of the membrane for positively charged carbon nanodots. Rates of carbon nanodot attachment to model chloroplast membranes varied with ionic strength in a manner consistent with electrical double layer compression on carbon nanodots. Our findings elucidate chemical interactions between nanomaterials and plant biosurfaces at the molecular level and potentially contribute to establishing structure–property–interaction relationships of sustainable nanomaterials with plant organelle membranes. 
    more » « less
  7. null (Ed.)
    Aggregation significantly influences the transport, transformation, and bioavailability of engineered nanomaterials. Two–dimensional MoS2 nanosheets are one of the most well-studied transition-metal dichalcogenide nanomaterials. Nonetheless, the aggregation behavior of this material under environmental conditions is not well understood. Here, we investigated the aggregation of single-layer MoS2 (SL-MoS2) nanosheets under a variety of conditions. Trends in the aggregation of SL-MoS2 are consistent with classical Derjaguin–Landau–Verwey–Overbeek (DLVO) colloidal theory, and the critical coagulation concentrations of cations follow the order of trivalent (Cr3+) < divalent (Ca2+, Mg2+, Cd2+) < monovalent cations (Na+, K+). Notably, Pb2+ and Ag+ destabilize MoS2 nanosheet suspensions much more strongly than do their divalent and monovalent counterparts. This effect is attributable to Lewis soft acid–base interactions of cations with MoS2. Visible light irradiation synergistically promotes the aggregation of SL-MoS2 nanosheets in the presence of cations, which was evident even in the presence of natural organic matter. The light-accelerated aggregation was ascribed to dipole–dipole interactions due to transient surface plasmon oscillation of electrons in the metallic 1T phase, which decrease the aggregation energy barrier. These results reveal the phase-dependent aggregation behaviors of engineered MoS2 nanosheets with important implications for environmental fate and risk. 
    more » « less
  8. null (Ed.)
    A mechanistic understanding of the influence of the surface properties of engineered nanomaterials on their interactions with cells is essential for designing materials for applications such as bioimaging and drug delivery as well as for assessing nanomaterial safety. Ligand-coated gold nanoparticles have been widely investigated because their highly tunable surface properties enable investigations into the effect of ligand functionalization on interactions with biological systems. Lipophilic ligands have been linked to adverse biological outcomes through membrane disruption, but the relationship between ligand lipophilicity and membrane interactions is not well understood. Here, we use a library of cationic ligands coated on 2 nm gold nanoparticles to probe the impact of ligand end group lipophilicity on interactions with supported phosphatidylcholine lipid bilayers as a model for cytoplasmic membranes. Nanoparticle adsorption to and desorption from the model membranes were investigated by quartz crystal microbalance with dissipation monitoring. We find that nanoparticle adsorption to model membranes increases with ligand lipophilicity. The effects of ligand structure on gold nanoparticle attachment were further analyzed using atomistic molecular dynamics simulations, which showed that the increase in ligand lipophilicity promotes ligand intercalation into the lipid bilayer. Together, the experimental and simulation results could be described by a two-state model that accounts for the initial attachment and subsequent conversion to a quasi-irreversibly bound state. We find that only nanoparticles coated with the most lipophilic ligands in our nanoparticle library undergo conversion to the quasi-irreversible state. We propose that the initial attachment is governed by interaction between the ligands and phospholipid tail groups, whereas conversion into the quasi-irreversibly bound state reflects ligand intercalation between phospholipid tail groups and eventual lipid extraction from the bilayer. The systematic variation of ligand lipophilicity enabled us to demonstrate that the lipophilicity of cationic ligands correlates with nanoparticle-bilayer adsorption and suggested that changing the nonpolar ligand R group promotes a mechanism of ligand intercalation into the bilayer associated with irreversible adsorption. 
    more » « less